
Imhanlahimi R. E, International Journal of Advanced Trends in Computer Applications (IJATCA) 

Volume 6, Number 2, June - 2019,  pp. 19-26 

ISSN: 2395-3519  

www.ijatca.com                                                                                        19 

 

 

International Journal of Advanced Trends in 

Computer Applications 
www.ijatca.com 

 

Demystification of Many-Objective Swarm 

Optimization Problem using Controlling 

Dominance Area of Solutions and Shift-Based 

Density Estimator 
1
Imhanlahimi R. E, 

2
Kaba Y, 

3
John-Otumu A. M, 

4
Imhanlahimi G. O 

1
Department of Computer Science, Ambrose Alli University, Ekpoma, Nigeria 

2
myTaxi, Berlin Germany 

3
Training, Research & Innovations Unit, Directorate of ICT, Ambrose Alli University, Ekpoma, Nigeria 

4
Professional and Applied Continuous Education, University of Winnipeg, Canada 

1
rebeccaimhans@gmail.com, 

2
y_kabs@yahoo.com, 

3
macgregor.otumu@gmail.com, 

4
gloryimhanlahimi@gmail.com 

 

Abstract: Evolutionary algorithms have been used to solve multi-objective optimization problems of two or three 

objectives giving results that both converge to the optimal front and are diverse along that front. However, once 

the number of objectives rises to four and above, the Pareto dominance concept that most of these algorithms are 

based on loses selection pressure, recombination operations are ineffective as individuals in populations are not 

close in the problem space and the evaluation of performance measures such as hyper-volume becomes 

computationally expensive. To overcome the loss in selection pressure, recent evolutionary algorithms adopt a 

number of techniques which include modifying the dominance relation to increase selection pressure as done with 

€-dominance, α-dominance and dominance area control, using a secondary selection mechanism such as the shift-

based density estimator, grid-based fitness metric or knee-point driven analysis to filter individuals and 

decomposing the so-called many objective problems into sub-problems to simultaneously solve. The controlling 

dominance area of solutions, CDAS technique has been found to be effective in generating solutions that converge 

to the optimal front but leads to a loss in the diversity of the generated solutions. In this paper, we propose an 

extension to the speed-constrained particle swarm optimizer that uses a relaxed form of dominance, CDAS and the 

shift-based density estimator as secondary selection mechanism to increase diversity of solutions obtained. Also, 

the particles in the swarm will have an archive of personal bests from which the selection will be done using the 

weighted sum approach. Finally, the performance of the algorithm will be compared with state of the art 

algorithms such as NSGA-III and MOEA/DD using the DTLZ benchmark functions. 
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I. INTRODUCTION 
 

Optimization decisions are made in all aspects of 

nature. In genetics, recombination is done as a search 

for desirable characteristics while the collaborative 

behavior of ants, bees, and schools of fishes in avoiding 

prey and finding food is a form of path optimization. 

Among humans, optimization can be a business 

decision between maximizing profits and minimizing 

risks, an engineering design problem to efficiently 

utilize scarce materials without compromising safety or 

in making personal decisions to derive the maximum 

utility from fixed resources. In all of these cases, 

decisions must be made in the context of all the 

conflicting but feasible solutions. In the case of a 

business-man aiming to achieve maximum profit, the 

level of risk must be acceptable and reasonable. Many 

practical real-life problems require the “balancing” or 

optimizing of three or more usually conflicting 

objectives. These decisions can be easily made if all the 

possible scenarios can be enumerated giving the 

decision maker the ability to make an educated choice. 

However, this is only possible in trivial cases. It is 

more common that the size of problem space makes it 

impossible to enumerate all the different combinations 

of objectives. Optimization is therefore essentially a 
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search through a space of feasible solutions to obtain 

the maximum or minimum value depending on the 

nature of problem being solved or decision being made. 

Multi-objective optimization involves more than one 

objective and typically a set of results is returned to 

give the decision maker a range of choices with 

different trade-offs. Evolutionary algorithms are well-

suited to solving multi-objective problems as they are 

population-based, make no assumptions about the 

problem domain, can search large population spaces 

and return a set or population of results. Evolutionary 

techniques include genetic algorithm, differential 

evolution, evolutionary strategies and swarm 

optimization. As their names suggest, evolutionary 

algorithms borrow techniques from nature in searching 

through large multi-dimensional spaces. Evolution is a 

selective process that consistently and gradually refines 

a population by ensuring that properties of fitter 

members of the population are passed on the next 

generation. In nature, the ability of a species to survive 

in an environment of intense competition for scarce 

resources is dependent on how well it passes the 

characteristics needed for survival to the next 

generation. Particle swarm optimization is an 

evolutionary technique that mimics the emergent group 

intelligence exhibited by a swarm of birds, a school of 

fishes or a group of individual particles acting locally. 

Taking a swarm of birds as an example, no single 

individual has a complete picture 2 of the environment 

of the swarm, but by interacting and reacting to events 

locally, a group intelligence is emergent. This can be 

observed in the search for food and breeding locations 

and in the avoidance of prey. Particle swarm 

optimization is a population-based algorithm that 

updates the velocity of each particle in the swarm 

depending on the best position found by that particle 

and the global best position of the swarm. It is 

employed to solve multi-objective problems of four or 

more objectives.  

Evolutionary techniques have been effective in solving 

multi-objective problems of two or three objectives. 

However, when the number of objectives rises to four 

and above, selection pressure is lost as the Pareto 

dominance relation that most of the evolutionary 

algorithms are dependent on as a primary classifier of 

solutions is ineffective in selecting appropriate parents 

in genetic algorithms or leaders in swarm optimizers. 

Many approaches have been proposed to mitigate this, 

some of which includes a redefinition of the Pareto 

dominance relation, integrating a secondary classifier 

(usually a density estimator) to increase selection 

pressure or completely discarding the Pareto 

dominance relation. This project proposes a particle 

swarm optimizer that uses not only a modified form of 

dominance and but also a secondary classifier 

optimized for multi-objective problems of four or more 

objectives.  

The objective of this work is to extend existing 

techniques in swarm optimization to solve multi-

objective problems of more than four objectives 

consistently giving a result set that is converged, well-

distributed and diverse along the true Pareto front or 

the approximate front if the true front is unknown. The 

swarm optimizer is implemented, experimental tests are 

run to compare with state of the art algorithms and the 

results are statistical compared to determine the 

effectiveness of the proposed optimizer. Secondly, a 

thorough analysis of the optimizer is undertaken to 

determine the effect of using parameterization using 

Saltelli sampling method. 

 

II. LITERATURE REVIEW 
 

This section contains a description of the latest 

techniques in the field of multi-objective optimization 

using evolutionary techniques reviewed. 

Taxonomy of approaches that have been used to solve 

many objective optimization problems is given by [1]. 

The many objective optimization models can be 

grouped into five: a dominance relation modification 

model, secondary convergence metric model, 

performance indicator model, decomposition model 

and non-Pareto relations models. 

The dominance relation modification model are 

algorithms that modify the existing Pareto dominance 

technique by using a relaxed form of dominance to 

solve the loss in selection pressure due to an increase in 

the number of objectives.  

Techniques adopting this model include the use of a 

relaxed form of dominance called the Controlling 

Dominance Area of Solutions [2]. An update of 

Controlling Dominance Area of Solutions (CDAS) in 

the adoption of a self-controlling dominance area of 

solutions which attempts to solve the problem of user-

defined parameter tuning in the CDAS method [3], the 

use of CDAS in two particle swarm optimizers in a 

technique referred to as CDAS-SMPSO [4], the 

addition of fuzzy logic to determine a new fitness 

evaluation technique called fuzzy Pareto domination 

relation in [5, 6], the use of a preference ordering [7] 

and a novel velocity update and fitness evaluation 

technique in NMPSO [8]. 

The secondary convergence metric model uses a 

second criterion to rank solutions since the number of 

non-dominated solutions increases as a function of the 

number of objectives. In this model, the Pareto relation 

is not modified but selection pressure is maintained by 

adding an additional convergence metric. Some of the 

convergence metrics used is the knee-point driven 

evolutionary algorithm [9], grid-based fitness metric 
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strategy [10] and the modification of [11] to use a 

substitute distance assignment instead of crowd 

distancing assignment in [12]. 

The third model does not use any dominance concept 

but uses a performance indicator during the run of the 

algorithm to determine good solutions. The evaluation 

of performance indicators for multi-objective problem 

is expensive and this can increase the complexity of 

this model. Algorithms that use a performance 

indicator to determine solutions that better fit the 

diversity and convergence criteria include the indicator 

based selection in multi-objective search [13], HypE, 

an algorithm that uses Monte Carlo simulation to 

calculate approximate hyper-volume values for many 

objective problems which can be used to monotonically 

rank solutions [14] and a multiple indicator based 

algorithm that attempts to use stochastic measures to 

mitigate the effect of biases in single indicators [15]. 

Decomposition involves mathematically breaking 

down the many-objective problems into sub-problems 

and simultaneously solving these sub-problems. This 

technique was first implemented in [16]. 

Decomposition method has also been combined in 

some cases with the dominance relation to solve many 

objective problems as done in the reference-based 

sorting, NSGA-III [17, 18, 19].  

[20] extended the NSGA-III to provide better 

convergence by adopting decomposition based fitness 

evaluation. 

Techniques have been developed that use an entirely 

different form of ranking solutions which are not 

Pareto based. Examples of this include the use of 

ranking dominance which aggregates the performance 

of solution per performance indicator [15], a new 

archiving method used in Ideal Point Guided MOPSO 

[21] and the use of a leadership selection scheme, 

NWSum[22] to handle many objective problems in I-

MOPSO [21]. 

[1]found that PSOs such as CDAS-SMPSO scaled very 

well as the number of objectives increased likely as “a 

result of reduced crossover operator effectiveness due 

to the immense search space and higher levels of 

epistasis encountered in large-scale MaOPs.” Also, the 

use of dominance and decomposition especially in 

MOEA/DD [23] gave promising results. 

[1] Concluded that PSOs using the CDAS dominance 

scheme consistently produced good results as the 

number of objectives increased. This result is 

consistent with that found in [21]. However, 

subsequent studies found that the CDAS favors 

convergence over diversity which resulted in the 

modified S-CDAS. Hence, it is expected that CDAS 

combined with a crowding technique that promotes 

diversity such as the shift-based density estimator; SDE 

[24] will give a competitive performance if it 

incorporated with the SMPSO algorithm. 

III. METHODOLOGY 

This research work proposes a combination of CDAS, 

SDE and WSum as a more efficient means of resolving 

many-objectives problems. The CDAS acts as a fitness 

evaluation function to decide which particles of the 

swarm are saved to the archive, and when the archive is 

full, a secondary metric to filter solutions will be the 

shift-based density estimation (SDE) to ensure 

diversity in the leaders selected to lead as suggested by 

[24]. 

The leadership selection scheme of WSum for global 

and personal leadership selections will be incorporated 

into the proposed technique and the efficiency 

evaluated to determine if the increase in the quality of 

solutions produced justify the extra-computational 

costs. 

The CDAS-SDE Particle Swarm Algorithm i.e. CSPSO 

algorithm extends the speed constrained particle swarm 

optimization algorithm to enhance the algorithm’s 

performance on many-objective optimization problems. 

The Controlling Dominance Area of Solutions 

(CDAS) 

The CDAS is used to increase the dominance area and 

hence selection pressure of Pareto-based algorithms. 

The use of CDAS was found to produce solutions that 

converge to the true Pareto front but may lead to 

deterioration in the diversity of swarm.  

 

Input-> particle/vector X, userDefinedParameter 

Output-> array of modified fitness values, Y 

Begin 

objectiveCount = getNumberOfObjectives(X) 

vectorSum = 0; 

fitnessValue = array[objectiveCount] 

foreach objective i 

vectorSum += (X.getObjectiveValue(i) *        

X.getObjectiveValue(i)) 

vectorNorm = √vectorSum 

phiAngle = PI * userDefinedParameter 

foreach objective i 

omegaAngle = Arccosine 

(X.getObjectiveValue(i)/vectorNorm) 

fitnessValue[i] = (vectorNorm * Sine(phiAngle + 

omegaAngle))/Sine(phiAngle) 

return fitnessValue 

End 

Figure 3.1: CDAS Pseudo-code Listing 
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The Shift-based Density Estimator (SDE) 

The loss in selection pressure due to an increase in the 

number of objectives can be solved by modifying the 

dominance relation or using a secondary fitness 

evaluation scheme. Most density, crowding and nearest 

neighbor fitness evaluation mechanism are focused on 

the diversity of solutions. 

However, the shift-based density estimator (SDE) was 

developed to provide a secondary fitness evaluation 

method to produce a well converged and diverse set of 

particles. To achieve this, SDE considers both the 

sparsity of the neighborhood of a solution and the 

convergence of that solution. It ensures that poorly-

converged particles are shifted to denser regions hence 

increasing their chances of elimination. 

Begin 

Input -> Population: P, Size of population: N 

Ouput -> NULL 

foreach particle i in the population P 

foreach objective j 

shiftedList = List of size (N-1) 

foreach individual q where q ε P &i != q 

q′(j) = (q(j) <i(j)) ? i(j) : q(j) 

add q′ to shiftedList 

foreach individual in shiftedList, r′ 

dist(i, r′) = euclidean distance between i& r 

D(i, P) = D(dist(i, q′(1)), dist(i, q′(2)), ..., dist(i, 

q′(N−1))) 

i.SHIFT_BASED_DENSITY_ESTIMATOR = D(i, P) 

End 

Figure 3.2: SDE Pseudo-code Listing 

 

The Weighted Sum Approach (WSum) 

To select global or local leaders from an archive for a 

particle 𝑝, the WSum approach assigns more weight to 

the objectives that 𝑝 is already good at. The sum is 

calculated for each particle in the archive using the 

expression in equation 1 below: 

   (1) 

Where 𝑓𝑗 (𝑥𝑖) is the 𝑗𝑡ℎ fitness value of particle 𝑖, 𝑝𝑖 is 

the particle whose leader is to be selected. The leader 

with the smallest weighted sum is selected for the 

personal best while the reverse is done for the global 

leaders. 

To ensure diversity, the leader with the smallest 

weighted sum value is selected. To promote 

convergence the leader with the highest weight is 

selected. In the CDAS-SDE algorithms, diversity is 

promoted on the local level and convergence on the 

global scale, so global best is selected using the highest 

weighted sum value and local leaders are selected using 

the smallest weighted sum value. 

Begin 

Input-> Population of particles: swarm, Particle: 

particle 

Output-> Population with 

WSUM_FITNESS_ATTRIBUTE set 

foreach individual in swarm: 

weightedAggregate = 0 

objectiveSum = 0 

foreach objective i 

objectiveSum += individual.getObjectiveValue(i) 

foreach objective j 

weightedAggregate += 

((individual.getObjectiveValue(j)/objectiveSum) * 

particle.getObjectiveValue(j) 

individual.WSUM_FITNESS_ATTRIBUTE = 

weightedAggregate 

end 

Figure 3.3: WSum Pseudo-code Listing 

 

The Complete CSPSO Algorithm including 

leadership scheme  

Step 1: The swarm is initialized with random positions. 

A personal best archive is attached to each particle and 

initialized with the current position of that particle  

 

Step 2:Non-dominated particles using CDAS as a 

classifier are added to the archive. 

 

Step 3: Speed is computed. For a particle 𝑥, a local 

leader is selected from the 𝑥′𝑠personal archive using 

WSum, while it’s global leader is selected using the 

WSum with three randomly selected leaders from the 

archive as candidate leaders. 

 

Step 4: Positions are updated using the speed and 

personal archive of each particle is also updated if a 

better position is found. 

 

Step 5: Polynomial mutation is probabilistically 

applied. 
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Step 6: Leader’s archive is updated using the CDAS. If 

archive is full and a non-dominated solution is found, 

the secondary fitness evaluation of SDE is used to 

determine if the new solution should replace a particle 

in the archive or be discarded  

 

Step 7: If the maximum number of evaluations is not 

exceeded: steps (iii) – (vii) are repeated. 

 

Step 8: return leaders archive. 

 
Figure 3.4: Complete CSPSO Algorithm including 

leadership scheme 
 

IV. RESULTS AND DISCUSSION 
 

The aggregate column is the value of a performance 

measure derived from a combination of the 

approximate results set from all the seeds. The 

indifferent column in the Figures signifies statistically 

similar or different median results. This indifferent 

column is of importance as it shows that the addition of 

a deliberate local and global leadership selection 

scheme has no significant effect on the performance of 

the algorithm. This is evidenced by the observation that 

CSPSO and CDASPSO have statistically different 

performances in only ≈4% of the observed cases (2 𝑜𝑓 

45). The increased complexity and computational cost 

of applying the WSum selection scheme does not result 

in a commiserate increase in the quality of results 

produced. 

With the value of 𝑆𝑖=0.25, each particle in the swarm is 

moved through an angle 45⁰ to each of the objectives 

leading to a significant increase in the area of 

dominance and hence selection pressure. This results in 

very early convergence of the CDAS-SDE algorithms 

and a loss of diversity despite the secondary 

mechanism of shift-based density estimator. This is 

illustrated in the Figures 4.1 and 4.2. 

 
 

Figure 4.1: S = 0.25, Problem is DTLZ2 

 

 
 

Figure 4.2: S = 0.25, Problem is DTLZ2 

 
The CDAS-SDE algorithms perform bests in the 

additive epsilon indicator and generational distance 

performance measures, with CDASPSO converging to 

the optimal values for generational distance within 

2,500 function evaluations but have a comparatively 

worse performance in hyper-volume to NSGA-III and 

MOEAD.  

Similar results are observed for DTLZ3 and DTLZ4 

with the CDAS-based algorithms struggling with 

DTLZ4 but performing better in DTLZ3. When the 

value of 𝑆𝑖=0.35, the angle through which particles are 

translated is reduced in comparison to 𝑆𝑖= 0.25. 

This again results in a fast convergence for all the 

CDAS-SDE algorithms resulting in comparatively 

better values for generational distance and additive 

epsilon indicator.  

This is illustrated in figures 4.3 and 4.4. 

Note from figure 4.3 that CDASPSO and CSPSO have 

attained almost 0 generational distance values at 

roughly 1000 function evaluations. MOEAD and 

NSGA-III reach this value at close to 20,000 function 

evaluations. A similar observation is made from the 

generational distance chart. From figure 4.4, the 

CDAS-based algorithms have similar results in hyper-

volume to NSGA-III and MOEAD. DTLZ4 pose a 

more difficult challenge for the CDAS-SDE algorithms 

as they perform poorly in the hyper-volume in 

comparison with NSGA-III and MOEAD. 

At 𝑆𝑖=0.45, the shift-based density estimator plays a 

more dominant role as the area of dominance of 

solutions is contracted. This results in a better spread of 

solutions but also slower convergence towards the true 

Pareto front. The hyper-volume chart shown in figure 

4.5 illustrates this. 
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Figure 4.3: S = 0.35, Problem is DTLZ3 

 
 

Figure 4.4: S = 0.35, Problem is DTLZ3 

 

When 𝑆𝑖 = 0.50, which is the same as the conventional 

Pareto dominance, selection pressure is reduced as the 

number of objectives under consideration is 8. From 

the chart in figure 4.6, this results in a similar 

convergence profile as NSGA-III and MOEAD.  

When 𝑆𝑖 = 0.65, the CDAS-based algorithms perform 

poorly for both convergence and diversity of solutions 

as shown in the figures 4.7 and 4.8.  

In all of these cases, SMPSO was found to be 

ineffective in finding a well-converged or distributed 

solution set further confirming the loss in selection 

pressure due to Pareto dominance in many-objective 

optimization problems. 

 

Figure 4.5: S = 0.45, Problem is DTLZ3 

 

Figure 4.6: S = 0.50, Problem is DTLZ3 

 

Figure 4.7: S = 0.65, Problem is DTLZ2 
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Figure 4.8: S = 0.65, Problem is DTLZ2 

 

V. CONCLUSION 
 

In this research work shows that a combination of 

CDAS and SDE with a swarm optimizer is competitive 

with state of the art algorithms in solving multi-

objective problems of more than four objectives. Also, 

the addition of a deliberate leadership selection strategy 

at the local and global level while increasing the 

amount of computation required during each flight did 

not result in a corresponding level of increase in the 

quality of results produced. The diagnostic tests 

showed that CDASPSO provided very quick 

convergence in cases where an appropriate 𝑆𝑖 value 

was selected and that 𝑆𝑖 = 0.45 produced the best 

results in terms of convergence and diversity. 

While most of the CDAS-based algorithms could find 

good results in the DTLZ2 and DTLZ3, they 

consistently performed worse than NSGA-III and 

MOEAD in terms of hyper-volume on DTLZ4. 

Further research is needed to investigate this. Secondly, 

the fast convergence of the CDAS-based algorithms at 

lower 𝑆𝑖 values can be capitalized upon by promoting 

diversity in the swarm after a certain percentage of the 

maximum number of function evaluations has been 

exceeded. This can be done by applying a scheme that 

uses a performance indicator to detect convergence in 

the swarm and increment the 𝑆𝑖 value as swarm 

converges to promote diversity. 
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