Read More.

Call for Paper - December – 2022 Edition   

(SJIF Impact Factor: 5.966) (IJIFACTOR 3.8, RANKING: A+) (PIF: 3.460)

IJATCA solicits original research papers for the December – 2022 Edition.
Last date of manuscript submission is December 30, 2022.

                                                   

Computational Modeling of Gas-to-Solid Heat Transfer in an Adiabatic, Vertical Pipe


Volume: 1 Issue: 1
Year of Publication: 2019
Authors: Brundaban Patro, K. Kiran Kumar, D. Jaya Krishna



Abstract

Gas-solid flows in vertical pipes are found in many industries for heat transfer applications. Some of them are chemical industries, food and process industries, pharmaceutical industries, etc. In the present paper, the two-fluid model (the Eulerian-Eulerian approach) of ANSYS FLUENT 15.0 is used to model the heat transfer in gas-solid flows in an adiabatic, vertical pipe. The variable gas properties with respect to temperature are considered in the current study. The computational results are well validated with the benchmark experimental data. The effect of particle diameter on heat transfer and pressure drop is studied. It is noticed that the gas temperature increases and the solid temperature decreases with increasing the particle diameter. Again, increasing the particle diameter increases the logarithmic mean temperature difference and pressure drop; however, it decreases the average gas-solid Nusselt number.

References

  1. Avila, R., & Cervantes, J. (1995). Analysis of the heat transfer coefficient in a turbulent particle pipe flow. Int. J. Heat Mass Transfer, 38(11), 1923-1932.

  2. Azizi, S., Taheri, M., & Mowla, D. (2012). Numerical modeling of heat transfer for gas-solid flow in vertical pipes. Heat Transfer, Part A, 62, 659-677.

  3. Behzad, F., Mansoori, Z., Saffar-Avval, M., Tabrizi, H. B., & Ahmadi, G. (2010). Int. J. Heat Mass Transfer, 53, 1175-1182.

  4. Boothroyd, R. G., & Haque, H. (1970). Fully developed heat transfer to a gaseous suspension of particles flowing turbulently in ducts of different size. J. Mech. Eng. Sci., 12(3), 191-200.

  5. Boulet, P., Oesterle, B., & Taniere, A. (1999). Prediction of heat transfer in a turbulent gas-solid pipe flow using a two-fluid model. Part. Sci. Technol., 17, 253-267.

  6. Bourloutski, E. S., Bubenchikov, A. M., & Starchenko, A. V. (2002). Mech. Res. Commun., 29, 437-445.

  7. Chagras, V., Oesterle, B., & Boulet, P. (2005). Int. J. Heat Mass Transfer, 48, 1649-1661.

  8. Depew, C. A., & Farbar, L. (1963). Heat transfer to pneumatically conveyed glass particles of fixed size. J. Heat Transfer, 85(2), 164-171.

  9. Ding, J., & Gidaspow, D. (1990). AIChE J. 36, 523-538.

  10. Dixon, J.C. (2007). The Shock Absorber Handbook. Second Ed., John Wiley & Sons Ltd., England.

  11. El-Behery, S. M., El-Askary, W.A., Hamed, M. H. & Ibrahim, K. A. (2011). Int. J. Heat Fluid Flow, 32, 740-754.

  12. El-Behery. S. M., El-Askary, W. A., Hamed, M. H., & Ibrahim, K. A. (2012). Numerical and experimental studies of heat transfer in particle-laden gas flows through a vertical riser. Int. J. Heat Fluid Flow, 33, 118-130.

  13. El-Behery. S. M., El-Haroun, A. A., & Abuhegazy, M. R. (2017). Prediction of pressure drop in vertical pneumatic conveyors. J. Appl. Fluid Mech., 10, 519-527.

  14. Ergun, S. (1952). Fluid flow through packed columns. Chem. Eng. Prog., 48(2), 89-94.

  15. Farbar, L., & Depew, C. A. (1963). Heat transfer effects to gas-solids mixtures using solid spherical particles of uniform size. Ind. Eng. Chem. Fundam., 2(2), 130-135.

  16. Farbar, L., & Morley, M. J. (1957). Heat transfer to flowing gas-solids mixtures in a circular tube. Ind. Eng. Chem., 49(7), 1143-1150.

  17. Fluent Inc. (2003). Fluent User Guide. Lebanon, NH, USA, (currently ANSYS Inc., Canonsburg, PA, USA).

  18. Gunn, D. J. (1978). Transfer of heat or mass to particles in fixed and fluidized beds. Int. J. Heat Mass Transfer, 21, 467-476.

  19. Haim, M., Weiss, Y., & Kalman, H. (2007). Numerical model for heat transfer in dilute turbulent gas-particle flows. Part. Sci. Technol., 25, 173-196.

  20. Han, K. S., Sung, H. J., & Chung, M. K. (1991). Analysis of heat transfer in a pipe carrying two-phase gas-particle suspension. Int. J. Heat Mass Transfer, 34 (1), 69-78.

  21. Johnson, P. C., & Jackson, R. (1987). Frictional collisional constitutive relations for granular materials, with application to plane shearing. J. Fluid Mech., 176, 67-93.

  22. Kane, R. S., & Pfeffer, R. (1985). Heat transfer in gas-solids drag-reducing flow. J. Heat Transfer, 107, 570-574.

  23. Launder, B. E. & Spalding, D. B. (1974). The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng., 3, 269-289.

  24. Lun, C. K. K., Savage, S. B., Jeffrey, D. J., & Chepurniy, N. (1984). Kinetic theories for granular flow: Inelastic particles in Couette flow and slightly inelastic particles in a general flow field. J. Fluid Mech., 140, 223-256.

  25. Mansoori, Z., Saffar-Avval, M., Tabrizi, H. B., Ahmadi, G., & Lain, S. (2002). Int. J. Heat Fluid Flow, 23, 792-892.

  26. Matsumoto, S., Ohnishi, S., & Maeda, S. (1978). Heat transfer to vertical gas-solid suspension flows, J. Chem. Eng. Jpn., 11(2), 89-95.

  27. Mokhtarifar, N., Saffaraval, F., Saffar-Avval, N., Mansoori, Z., & Siamie, A. (2015). Experimental modeling of gas-solid heat transfer in a pipe with various inclination angles. Heat Transfer Eng., 36, 113-122.

  28. Patro, P. (2016). Computation of wall to suspension heat transfer in vertical pipes. Drying Technol., 34(6), 703-712.

  29. Pishvar, M., SaffarAvval, M., Mansoori, Z., & Amirkhosravi, M. (2014). Powder Technol., 262, 223-232.

  30. Rajan, K. S., Dhasandhan, K., Srivastava S. N., & Pitchumani, B. (2008). Int. J. Heat Mass Transfer, 51, 2801-2813.

  31. Rajan, K. S., Pitchumani, B., Srivastava, S. N., & Mohanty, B. (2007). Two-dimensional simulation of gas-solid heat transfer in pneumatic conveying. Int. J. Heat Mass Transfer, 50, 967-976.

  32. Saffar-Avval, M., Tabrizi, H. B., Mansoori, Z., & Ramezani, P., (2007). Int. J. Therm. Sci., 46, 67-75.

  33. Syamlal, M., Rogers, W., & O`Brien, T. J. (1993). MFIX documentation: Theory guide. DOE/METC-94/1004, Department of Energy, Morgantown Energy Technology Center, Morgantown, WV.

  34. Sorensen, R. A., Seader, J. D., & Brewster, B. S. (2001). Ind. Eng. Chem. Res., 40, 457-464.

  35. Sundaresan, S. (2000). AIChE J., 46, 1102-1105.

  36. Wahi, M. K. (1977). Heat transfer to flowing gas-solid mixtures. J. Heat Transfer, 99(1), 145-148.

  37. Wen, C. Y., & Yu, Y. H. (1966). Mechanics of fluidization. Chem. Eng. Prog. Symp. Ser., 162, 100-111.

Keywords

gas-solid flows; heat transfer, numerical modeling, logarithmic mean temperature difference.




© 2022 International Journal of Advanced Trends in Computer Applications
Foundation of Computer Applications (FCA), All right reserved.
Vision & Mission | Privacy Policy | Terms and Conditions