Read More.

Call for Paper - December – 2022 Edition   

(SJIF Impact Factor: 5.966) (IJIFACTOR 3.8, RANKING: A+) (PIF: 3.460)

IJATCA solicits original research papers for the December – 2022 Edition.
Last date of manuscript submission is December 30, 2022.

                                                   

A Study of Thermal Convection in a Horizontal Porous Layer with Effect of Variable Gravity and Internal Heat Source


Volume: 1 Issue: 1
Year of Publication: 2019
Authors: Anjanna Matta



Abstract

In this study, analyze the thermal convection with the effect of heat source and variable gravity in an infinite length of horizontal porous layer. Both the boundaries are considered to be inclined temperature gradients with bottom wall heating and top wall cooling. For a better understanding the combined influence of variable gravity and heat source is investigated by using linear stability analysis. This thermal study is evaluated by applying shooting and Runga-Kutta methods for the velocity, temperature and vertical thermal Rayleigh number (Rz) corresponding to different flow parameters. Increasing in the horizontal Rayleigh number, which caused the strong stabilization irrespective of gravity and mass flow effects. The asymmetric nature velocity and temperature profiles are observed due to enhance the heat source.

References

  1. Alex, S. M., & Patil, P.R. (2002). Effect of a variable gravity field on convection in an anisotropic porous medium with internal heat source and inclined temperature gradient, Transactions of the ASME.

  2. Alex , S. M. & Patil, P. R. (2002). Effect of a variable gravity field on thermal instability in a porous medium with inclined temperature gradient and vertical through flow, J. Porous Media, 5.

  3. Bear, J. (1988). Dynamics of Fluids in Porous Media, Dover.

  4. Chen, Xi & Li, A. (2014). An experimental study on particle deposition above near-wall heat source, Building and Environment, 81.

  5. Kwon, O., Bae, K. & Park, C. (2014). Cooling characteristics of ground source heat pump with heat exchange methods, Renewable Energy, 71.

  6. Gresho, P. M. & Sani, R. L. (1970). The effect of gravity modulation on the stability of a heated fluid layer, J. Fluid Mech., 40.

  7. Hart, J. E. (1972). Stability of thin non-rotating Hadley circulations, J. Atmos. Sci., 29.

  8. Hart, J. E. (1983). A note on the stability of low-Prandtl-number Hadley circulations, J. Fluid Mech., 132.

  9. Manole, D. M. & Lage, J. L. (1995). Numerical simulation of supercritical Hadley circulation within a porous layer induced by inclined temperature gradients, Int. J. Heat Mass Transfer, 38.

  10. Matta, A., Narayana, P. A. L. & Hill, A. A. (2016). Non-linear thermal instability in a horizontal porous layer with an internal heat source and mass flow, Acta Mechanica.

  11. Matta, A. (2019). On the stability of hadley-flow in a horizontal porous layer with non-uniform thermal gradient and internal heat source, Microgravity Science and Technology, 31 (2), 169-175.

  12. Matta, A. (2019). Mono-diffusive Hadley-Prats flow in a horizontal porous layer subject to variable gravity and internal heat generation, Heat Transfer - Asian Research, 48(4), 1399-1412.

  13. Nield, D.A., (1991). Convection in a porous medium with inclined temperature gradient, Int. J. Heat Mass Transfer, 34.

  14. Nield, D.A., (1994). Convection induced by an inclined temperature gradient in a shallow horizontal layer, Int. J. Heat and Fluid Flow, 15.

  15. Nield, D. A. (1994). Convection in a porous medium with inclined temperature gradient: additional results, Int J. Heat Mass Transfer, 37.

  16. Nield, D. A. & Bejan, A. (2013). Convection in Porous Media, forth ed., Springer .

  17. Parthiban, C. & Patil, P.R. (1995). Effect of non-uniform boundary temperatures on thermal instability in a porous medium with internal heat source, Int. Commun. Heat Mass Transfer, 22.

  18. Parthiban, C. & Patil, P. R. (1997). Thermal instability in an anisotropic porous medium with internal heat source and inclined temperature gradient, Int. Comm. Heat Mass Transfer, 24.

  19. Roberts, P. H. (1967). Convection in horizontal layers with internal heat generation: Theory J. Fluid Mech., 30.

  20. Schwiderskei, W. & Schwabh, J. A. (1971). Convection experiments with electrolytically heated fluid layers, J. Fluid Mech., 48.

  21. Thirlby, R., (1970). Convection in an internally heated layer. J. Fluid Mech., 44.

  22. Trittond, J. & Zarraua, M. N. (1967). Convection in horizontal layers with internal heat generation, J. Fluid Mech., 30.

  23. Tveitereid, M. (1977). Thermal convection in a horizontal porous layer with internal heat sources, Int. J. Heat Mass Transfer, 20.

  24. Yoo, J. S. & Schultz, W. W. (2003). Thermal convection in a horizontal porous layer with spatially periodic boundary temperatures: small Ra flow, Int. J. of Heat and Mass Transfer, 46.

Keywords

Thermal convection, variable gravity, heat source, horizontal porous layer.




© 2022 International Journal of Advanced Trends in Computer Applications
Foundation of Computer Applications (FCA), All right reserved.
Vision & Mission | Privacy Policy | Terms and Conditions